3.2.60 \(\int \cos (c+d x) \sqrt {a+a \sec (c+d x)} (A+C \sec ^2(c+d x)) \, dx\) [160]

3.2.60.1 Optimal result
3.2.60.2 Mathematica [A] (verified)
3.2.60.3 Rubi [A] (verified)
3.2.60.4 Maple [B] (verified)
3.2.60.5 Fricas [A] (verification not implemented)
3.2.60.6 Sympy [F]
3.2.60.7 Maxima [B] (verification not implemented)
3.2.60.8 Giac [F]
3.2.60.9 Mupad [F(-1)]

3.2.60.1 Optimal result

Integrand size = 33, antiderivative size = 94 \[ \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {a} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}-\frac {a (A-2 C) \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \]

output
A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+A*sin(d*x+c) 
*(a+a*sec(d*x+c))^(1/2)/d-a*(A-2*C)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)
 
3.2.60.2 Mathematica [A] (verified)

Time = 0.52 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.89 \[ \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a \left (A \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right )+(2 C+A \cos (c+d x)) \sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Cos[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]
 
output
(a*(A*ArcTanh[Sqrt[1 - Sec[c + d*x]]] + (2*C + A*Cos[c + d*x])*Sqrt[1 - Se 
c[c + d*x]])*Tan[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d 
*x])])
 
3.2.60.3 Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.12, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {3042, 4575, 27, 3042, 4403, 3042, 4261, 216, 4279}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos (c+d x) \sqrt {a \sec (c+d x)+a} \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4575

\(\displaystyle \frac {\int \frac {1}{2} \sqrt {\sec (c+d x) a+a} (a A-a (A-2 C) \sec (c+d x))dx}{a}+\frac {A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sqrt {\sec (c+d x) a+a} (a A-a (A-2 C) \sec (c+d x))dx}{2 a}+\frac {A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a A-a (A-2 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{2 a}+\frac {A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 4403

\(\displaystyle \frac {a A \int \sqrt {\sec (c+d x) a+a}dx-a (A-2 C) \int \sec (c+d x) \sqrt {\sec (c+d x) a+a}dx}{2 a}+\frac {A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a A \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-a (A-2 C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{2 a}+\frac {A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {-\frac {2 a^2 A \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-a (A-2 C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{2 a}+\frac {A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {2 a^{3/2} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-a (A-2 C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{2 a}+\frac {A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 4279

\(\displaystyle \frac {\frac {2 a^{3/2} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {2 a^2 (A-2 C) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{2 a}+\frac {A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

input
Int[Cos[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]
 
output
(A*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/d + ((2*a^(3/2)*A*ArcTan[(Sqrt[a 
]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d - (2*a^2*(A - 2*C)*Tan[c + d* 
x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(2*a)
 

3.2.60.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4279
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*b*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]])), x] /; Free 
Q[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4403
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_ 
.) + (c_)), x_Symbol] :> Simp[c   Int[Sqrt[a + b*Csc[e + f*x]], x], x] + Si 
mp[d   Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x], x] /; FreeQ[{a, b, c, 
 d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 4575
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Co 
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/( 
b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b 
*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, 
 C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || 
 EqQ[m + n + 1, 0])
 
3.2.60.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(176\) vs. \(2(84)=168\).

Time = 0.87 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.88

method result size
default \(\frac {\left (A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+A \cos \left (d x +c \right ) \sin \left (d x +c \right )+2 C \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d \left (\cos \left (d x +c \right )+1\right )}\) \(177\)

input
int(cos(d*x+c)*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x,method=_RETURNV 
ERBOSE)
 
output
1/d*(A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1 
)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+A*(-cos(d*x+c)/(cos(d*x+c 
)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1)) 
^(1/2))+A*cos(d*x+c)*sin(d*x+c)+2*C*sin(d*x+c))*(a*(1+sec(d*x+c)))^(1/2)/( 
cos(d*x+c)+1)
 
3.2.60.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 258, normalized size of antiderivative = 2.74 \[ \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {{\left (A \cos \left (d x + c\right ) + A\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (A \cos \left (d x + c\right ) + 2 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{2 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {{\left (A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (A \cos \left (d x + c\right ) + 2 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{d \cos \left (d x + c\right ) + d}\right ] \]

input
integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorith 
m="fricas")
 
output
[1/2*((A*cos(d*x + c) + A)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*s 
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d 
*x + c) - a)/(cos(d*x + c) + 1)) + 2*(A*cos(d*x + c) + 2*C)*sqrt((a*cos(d* 
x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d), -((A*cos(d*x 
 + c) + A)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x 
+ c)/(sqrt(a)*sin(d*x + c))) - (A*cos(d*x + c) + 2*C)*sqrt((a*cos(d*x + c) 
 + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]
 
3.2.60.6 Sympy [F]

\[ \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \cos {\left (c + d x \right )}\, dx \]

input
integrate(cos(d*x+c)*(A+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2),x)
 
output
Integral(sqrt(a*(sec(c + d*x) + 1))*(A + C*sec(c + d*x)**2)*cos(c + d*x), 
x)
 
3.2.60.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 792 vs. \(2 (84) = 168\).

Time = 0.37 (sec) , antiderivative size = 792, normalized size of antiderivative = 8.43 \[ \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorith 
m="maxima")
 
output
1/4*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^ 
(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + 
c) - (cos(d*x + c) - 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) 
 + 1)))*sqrt(a) + sqrt(a)*(arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c) 
^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 
 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 
 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2 
*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c 
), cos(2*d*x + 2*c) + 1))) + 1) - arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x 
 + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c 
), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin( 
2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2 
*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2* 
d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d* 
x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - arctan2((cos(2*d*x + 2*c)^2 + sin 
(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 
 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
 + 2*c) + 1)) + 1) + arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +...
 
3.2.60.8 Giac [F]

\[ \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \cos \left (d x + c\right ) \,d x } \]

input
integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorith 
m="giac")
 
output
sage0*x
 
3.2.60.9 Mupad [F(-1)]

Timed out. \[ \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \cos \left (c+d\,x\right )\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \]

input
int(cos(c + d*x)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2),x)
 
output
int(cos(c + d*x)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2), x)